Chlorine

- **Units of Measure**: ppm
- **MDL** and **MDLG**: 4
- **Likely Source of Contamination**: Water additives used to control microbes.

Chlorine can be solid, liquid, or gas additive used to control microbes in drinking water. Drinking water that has not been treated with chlorination or other disinfectants may cause gastrointestinal distress or other health problems.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation Y/N</th>
<th>Level Detected</th>
<th>Units of Measure</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>Y</td>
<td>N</td>
<td>Annual Avg. 4.2</td>
<td>ppm</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Range 1.3 - 3.3</td>
<td></td>
<td></td>
<td>Water additives used to control microbes</td>
</tr>
</tbody>
</table>

Haloacetic Acids (HAA)

- **Oakmont Tank**
 - **Violations Y/N**: N
 - **Level Detected**: Annual Avg. 24.9
 - **Units of Measure**: ppm
 - **MCLG**: N/A
 - **MCL**: 60
 - **Likely Source of Contamination**: By-product of drinking water disinfection.

Some people who drink water containing haloacethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or nervous system, and may have an increased risk of getting cancer.

Total Trihalomethanes (THMs)

- **Total Trihalomethanes (THMs)**
 - **Oakmont Tank**
 - **Violations Y/N**: N
 - **Level Detected**: Annual Avg. 51.5
 - **Units of Measure**: ppm
 - **MCLG**: N/A
 - **MCL**: 80
 - **Likely Source of Contamination**: By-product of drinking water disinfection.

- **Total Trihalomethanes (THMs)**
 - **Elm Grove Rock**
 - **Violations Y/N**: N
 - **Level Detected**: Annual Avg. 48.7
 - **Units of Measure**: ppm
 - **MCLG**: N/A
 - **MCL**: 80
 - **Likely Source of Contamination**: By-product of drinking water disinfection.

- **Total Trihalomethanes (THMs)**
 - **139 E. Bethlehem Blvd.**
 - **Violations Y/N**: N
 - **Level Detected**: Annual Avg. 36.8
 - **Units of Measure**: ppm
 - **MCLG**: N/A
 - **MCL**: 80
 - **Likely Source of Contamination**: By-product of drinking water disinfection.

Sodium

- **Violations Y/N**: N
- **Level Detected**: Annual Avg. 40.8
- **Units of Measure**: ppm
- **MCLG**: N/A
- **Likely Source of Contamination**: Erosion of natural deposits.

Sodium

- **Violations Y/N**: N
- **Level Detected**: Annual Avg. 40.8
- **Units of Measure**: ppm
- **MCLG**: N/A
- **Likely Source of Contamination**: Erosion of natural deposits.

Wheeling Water conducted additional monitoring under the Long Term 2 Enhanced Surface Water Treatment Rule for cryptosporidiums, E.coli, and turbidity issued by the US EPA. There were no detects. The monitoring data is available by contacting Wheeling Water, 304-234-3835.

Wheeling Water performed additional sampling for microcystins for Assessment Monitoring under the Forth Unregulated Contaminant Monitoring Rule issued by the US EPA. There were no detects. The monitoring data is available by contacting Wheeling Water, 304-234-3835.

Consumer Confidence REPORT 2018 (CCR)

At Your Service

Wheeler Water Treatment Plant
1551 Richland Avenue
WHEELING, WV 26003

Public Water Supply # WY30305/6

www.wheelingwv.gov

Published March 2019

Leads

- Lead – if present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and homes plumbing. Wheeling Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information or lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/leadwater.

In March 2018, Wheeling Water received a Notice of Violation for failure to complete corrective actions for Backflow Prevention according to an approved corrective action plan. The City Council has since drafted, passed, and begun to implement this program.

Wheeling Water works around the clock to meet all regulations required by the Safe Drinking Water Act and provide quality water to all of our customers. The operation staff at our plant is highly trained, experienced and holds a minimum of a Class III Water Plant Operator’s License. The facility is staffed 24 hours a day, 365 days a year.

We ask that you help support our water system and protect our water sources, which are the heart of our community.
The water is pumped from the Ohio River into the treatment plant where it is carefully treated, filtered and disinfected to ensure safe water to the customer. In addition to the Ohio River, there are five wells located near the plant that may be utilized as an alternative source of water in the event the Ohio River becomes contaminated due to a spill. These wells, which are not under the influence of surface water, are treated the same way as the river water and can provide approximately 50% of the average daily usage.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits of contaminants in bottled water which must provide the same protection for public health. The Ohio River is typically a reliable water supply. However, it is vulnerable to contamination. This requires a very diligent monitoring program and a sophisticated treatment facility to ensure that the water meets all state and federal health and safety regulations. As the water quality of the Ohio River improves, it brings additional treatment problems, such as large quantities of algae and prolific growth of zebra mussels, which can plug intakes and foul treatment systems. These new problems have created additional expenses to meet the increasingly stringent requirements set by the EPA and ensure the quality of water our customers have to expect. The Wheeling Water Plant treats approximately 6.7 million gallons of water per day and distributes this water through 200 miles of water mains, some of which are over 100 years old. The maintenance and upgrade of this diversified system is reflected in periodic rate increases.

Turbidity, caused by soil runoff, is generally thought of as the cloudiness of water. We test turbidity because it is a good indicator of the effectiveness of our filtering system. Although turbidity has no health effects, at high levels it can impair the disinfection process. The highest turbidity reading for 2018 was 0.023 NTU and the lowest turbidity reading was 0.012 NTU. The yearly average was 0.017 NTU.

All drinking water, including bottled water, may reasonably be expected to contain at least minute amounts of some contaminants. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Contaminants that may be present in source water include:

- **Microbial Contaminants** such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

- **Inorganic Contaminants** such as salts and metals, which can be naturally-occurring, or result from urban storm water runoff, industrial or domestic wastewater discharge, oil and gas production, mining, and farming.

- **Pesticides and Herbicides** which may come from a variety of sources such as agriculture, urban storm runoff, and residential uses.

- **Organic Chemical Contaminants** including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

- **Radioactive Contaminants** which can be naturally-occurring as the result of oil and gas production and mining activities.

Table of Test Results - Regulated Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation Y/N</th>
<th>Level Detected</th>
<th>Units of Measure</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>N</td>
<td>0017 °/h of monthly samples <0.3</td>
<td>NTU</td>
<td>n</td>
<td>TT</td>
<td>Soil Runoff</td>
</tr>
<tr>
<td>Copper (Pbs)</td>
<td>N</td>
<td>0.331 ppm</td>
<td>ppb</td>
<td>1.5</td>
<td>Al=1.5</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
</tr>
<tr>
<td>Lead (Pbs)</td>
<td>N</td>
<td>3.0 ppb</td>
<td>ppb</td>
<td>0.05</td>
<td>Al=0.05</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride</td>
<td>N</td>
<td>0.732 ppm</td>
<td>ppm</td>
<td>4</td>
<td>4</td>
<td>Erosion of natural deposits; acids to water which promotes strong teeth; discharge from fertilizer and aluminum factories</td>
</tr>
<tr>
<td>Nitrate</td>
<td>N</td>
<td>1.04 ppm</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>Barium</td>
<td>N</td>
<td>0.04 ppm</td>
<td>ppm</td>
<td>2</td>
<td>2</td>
<td>Discharge of drilling waste; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
</tbody>
</table>

1. Turbidity is a measure of the cloudiness in water. We monitor it because it is a good indicator of the effectiveness of our filtration system.
2. Copper and lead samples were collected from 39 homes in our community water system in July 2016. Only the 90th percentile is reported. None of the samples exceeded the MCL.